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Abstract. An investigation of the cross-section for polarized neutrons scattered by a magnetic
material is reported. Included in the investigation are the cross-sections for elastic (Bragg),
total, and inelastic scattering processes. Special attention is paid to the information available
on the chiral character of magnetic states. It is possible that the magnetic response function
(also known as the spin van Hove function) is spatially anisotropic, in which case the observed
signals are different for the scattering wave vectorsk and−k. This situation can arise with
materials in which the magnetic ions are not at centres of inversion symmetry, and when the
magnetic order is not collinear, e.g. a helimagnet.

1. Introduction

The perspicacity to magnetic properties of materials that is special in using the technique
of neutron scattering is realized to the full with methods which exploit the polarization of
neutron beams [1]. In Bragg-diffraction experiments it is today almost routine practice to
employ polarized-beam methods, most commonly polarization of the primary beam to induce
an interference between the magnetic and nuclear scattering amplitudes. The interference
term in the cross-section, being linear in the magnetic amplitude, offers enhanced sensitivity
and the sign of the amplitude. The empirical information on the magnetic properties features
both the configuration of the moments and the spatial distribution of the magnetization. For
example, in a recent experiment, using a reflectometer, the first of these two features has
been nicely exploited to find the chirality of layers of magnetic material [2].

Because of the less than perfect efficiency of polarization devices, currently polarization
methods are not common practice in measurements of inelastically scattered neutrons where
the signals involved are quite small compared to Bragg intensities. Even so, a large number
of successful experiments have been reported in the past three decades [3–5]. In most
cases a polarized beam is used to effect a separation of the nuclear (lattice vibrations) and
magnetic contributions to scattered signals.

The large diversity of materials of current interest, like spin ladders, dimerized chains,
and molecular magnets, makes it timely to take a fresh look at the information that can be
gathered about a sample of a magnetic material by scattering a beam of polarized neutrons
from it. Here, we discuss the appropriate cross-section for the scattering process in terms of
a van Hove response function for spin operators. (It is assumed that the magnetic ions are
identical.) For theoretical investigations, it might be useful to derive the response function
from an auxiliary function better suited than the response function itself for calculation,
e.g. a Green function or Kubo’s relaxation function.
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We present a number of new results that should be useful in the interpretation and
design of experiments looking at Bragg diffraction, total scattering or inelastic scattering.
In the discussion, attention is given to effects that can occur in materials that do not
support a long-range magnetic order, and possess anisotropic exchange interactions and
non-centrosymmetric sites for the magnetic ions. When discussing ordered states we
allow for non-collinear configurations of the moments, found in a weak ferromagnet and a
helimagnet. Another feature of our work, hopefully, is a perspicuous account of the chirality
of excitations as seen in the cross-section for inelastically scattered polarized neutrons.

We make good shortcomings in a recent paper [6]. The authors of [6] set aside significant
previous experimental work, and their theoretical treatment is incomplete to the extent that,
when corrected, its validity is restricted to scattering which is spatially isotropic, so it
excludes, for example, non-collinear configurations.

Most of our findings are reported in section 3, following a review of the cross-section for
polarized neutrons scattered by a magnetic material. Conclusions are gathered in section 4.

2. The cross-section for scattering a polarized beam

Perhaps the most compact expression for the cross-section for neutrons scattered by unpaired
electrons comes from expressing the magnetic interaction as

V (k) = σ · T (k) (2.1)

whereσ is twice the value of the spin of the neutron andk = q − q′ is the change in
the wave vector of the neutron caused by scattering. A useful approximation to the atomic
variableT (k), in which the orbital contribution to the magnetic moment is described by a
gyromagnetic factor different from the pure-spin value, is

T (k) = 1

2

∑
a

gaFa(k) exp(ik ·Ra){k̂ × (Sa × k̂)}. (2.2)

Here, the unit vector̂k = k/k, and ga, Fa(k), Ra, andSa are, respectively, the gyro-
magnetic factor, atomic form factor, position and spin operator of the ion labelled by
the indexa. If the primary beam of neutrons has a polarizationP , the cross-section is
proportional to [7, 8]

1

2π

∫ ∞
−∞

dt exp(−iωt){〈T+(k) · T (k, t)〉 + iP · 〈T+(k)× T (k, t)〉}. (2.3)

In this expression, ¯h = 1, ω = (q2 − q ′ 2)/2m is the energy transferred from the beam to
the sample, and〈· · ·〉 denotes the thermal average of the enclosed Heisenberg operator.

The polarization of the secondary beam of neutrons contains a term proportional to
〈T+ × T 〉. This term is responsible for creating polarization from an unpolarized(P = 0)
primary beam.

The cross-section that describes Bragg diffraction, which is a strictly elastic scattering
process, is found from (2.3) by taking the limitt → ∞ in the correlation functions. The
result

〈T+(k) · T (k, t = ∞)〉 = |〈T (k)〉|2 (2.4)

is correct for a bulk sample, and the polarization-dependent contribution in (2.3) is treated
in a similar manner [8]. Not included in the foregoing discussion is the interference between
nuclear and magnetic scattering amplitudes induced by polarization in the primary beam.
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For materials with overlapping nuclear and magnetic Bragg reflections, like ferromagnets,
the interference affords a valuable method for obtaining accurate data.

Henceforth, we consider magnetic ions that have common values for the gyromagnetic
and atomic form factors. In this case, for example,

〈T+(k) · T (k, t)〉 =
{

1

2
gF(k)

}2∑
α,β

(δαβ − k̂αk̂β)
∑
a,b

exp{ik · (Rb −Ra)}〈Sαa Sβb (t)〉

(2.5)

whereα and β label Cartesian components. It will prove convenient to use a van Hove
response function defined by

Sαβ(k, ω) = 1

2πN

∫ ∞
−∞

dt exp(−iωt)
∑
a,b

exp{ik · (Rb −Ra)}〈Sαa Sβb (t)〉 (2.6)

whereN is the number of identical magnetic ions. The cross-section (2.3) normalized by
the number of ions is proportional to{

1

2
gF(k)

}2∑
α,β

Sαβ(k, ω)[(δαβ − k̂αk̂β)+ iGαβ(P ,k)] (2.7)

and, on using equation (10.81) from [8],

Gαβ(P ,k) = (k̂ · P )
∑
γ

εαβγ k̂γ = Gαβ(P ,−k) (2.8)

where the antisymmetric unit tensor of rank three (also called the unit axial tensor) gives
for the vector product ofk andP , say,

(k̂ × P )α =
∑
β,γ

εαβγ k̂βPγ .

In (2.7) we note that the first term inside the square brackets, which is independent of
the polarization, is even with respect to an interchange of the Cartesian labelsα and β,
whileGαβ is odd with respect to these labels (Gαβ is actually the same as the corresponding
quantity in equation (A3) of [6], where the expression is not reduced to the simple form
shown in (2.8)). This observation suggests that it is sensible to write

Sαβ(k, ω) = Aαβ(k, ω)− iBαβ(k, ω) (2.9)

where

Aαβ(k, ω) = 1

2
{Sαβ(k, ω)+ Sβα(k, ω)} = Aβα(k, ω) (2.10)

and

Bαβ(k, ω) = i

2
{Sαβ(k, ω)− Sβα(k, ω)} = −Bβα(k, ω). (2.11)

Inserting these expressions in (2.7), the latter reduces to{
1

2
gF(k)

}2∑
α,β

[(δαβ − k̂αk̂β)Aαβ(k, ω)+Gαβ(P ,k)Bαβ(k, ω)]. (2.12)

There is something to be said in favour of introducing a vectorB defined in terms of
Bαβ by

Bγ = 1

2

∑
α,β

Bαβεαβγ (2.13)
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from which we get

Bx = Byz By = Bzx Bz = Bxy. (2.14)

Using the standard identity∑
α,β

εαβγ εαβγ
′ = 2δγ γ ′

and the definitions (2.8) and (2.13), one finds∑
α,β

GαβBαβ = 2(k̂ · P )(k̂ ·B). (2.15)

Thus, the contribution to the cross-section induced by the polarization is proportional to the
product of the projection ofP and the projection ofB on the scattering vector.

SinceBαβ is constructed from the difference of the products of two spin operators with
inverted order, one anticipates that its actual value hinges on the commutation relation, or
Lie algebra, for spin operators. In turn, one expectsBαβ to contain contributions that have
a purely quantum mechanical origin. This aspect ofBαβ is apparent in the total scattering
that it is responsible for. From (2.6) and (2.11) one finds, fork constant andα 6= β, that
the total scattering is proportional to∫ ∞
−∞

dω Bαβ(k, ω) = − 1

2N

∑
a

∑
γ

εαβγ 〈Sγa 〉 +
1

N

∑
a,b

sin{k · (Ra −Rb)}〈Sαa Sβb 〉. (2.16)

The first term in (2.16) is a direct consequence of the commutation relation forSαa andSβb ,
and it is evidently zero for a magnetic material with no long-range order. On using (2.8)
one finds that the first term contributes to the cross-section for total scattering a factor

−(k̂ · P )(k̂ ·M ) (2.17)

where the magnetization is

M = 1

N

∑
a

〈Sa〉.

Hence, the total scattering contains the projection of the magnetization onk. This finding
contrasts with the cross-section for Bragg diffraction (a time-averaged process whereas the
total scattering is an instantaneous process) which contains components of the spatial Fourier
transform of the magnetization that are perpendicular tok. Of course,M is zero for an
antiferromagnet, and other configurations with complete compensation of the moments.

The second term in (2.16) is zero for a material in which the magnetic ions occupy sites
that are centrosymmetric for, in this case, the two-spin correlation function depends only
on |Ra −Rb|. In addition, when there is no long-range order andα 6= β, the correlation
function 〈Sαa Sβb 〉 is zero unless the spin Hamiltonian contains an anisotropic interaction,
e.g. the Dzyaloshinsky–Moriya exchange interaction. We conclude that, in the absence of
long-range magnetic order in the target sample, the total scattering generated byBαβ is
most probably zero. Exceptions are provided by various novel materials, like a dimerized
chain with anisotropic exchange interactions. Since the one-ion anisotropy Hamiltonian
vanishes identically for spins of magnitude12, such as that for Cu2+, the anisotropic
interaction plays an important role in the magnetic anisotropy of antiferromagnetic cuprates
and similar materials. Lastly, the second term in (2.16) contributes to the cross-section for
total scattering a factor

(k̂ · P )(1/N)
∑
a,b

sin{k · (Ra −Rb)}k̂ · 〈Sa × Sb〉. (2.18)
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It is interesting to observe that this contains the projection onk of a chiral order para-
meter [12].

We now discuss in yet more detail the physical properties of the symmetric,Aαβ , and
antisymmetric,Bαβ , components of the van Hove response function. Prior to this, we notice
that Bαβ determines not only the polarization-dependent contribution to the cross-section
but also the polarization created in the scattering of an initially unpolarized beam.

3. The response function

Initially, we look at properties ofSαβ(k, ω) that do not depend explicitly on the magnetic
state of the target sample. The essential feature of the atomic variables in the interaction
operator is that they are represented by Hermitian operators, e.g.{Sαa }+ = Sαa .

First, on using the identity

{Sαβ(k, ω)}∗ = Sβα(k, ω) (3.1)

it is at once evident that bothAαβ andBαβ are purely real. This property, in turn, means
that the cross-section is purely real, as it must be. Also,

Aαβ(k, ω) = ReSαβ(k, ω) (3.2)

and

Bαβ(k, ω) = −Im Sαβ(k, ω). (3.3)

These results follow immediately from the definitions (2.10) and (2.11) and the identity
(3.1).

Next, we use the identity which is often referred to as the condition of detailed balance,
namely,

Sβα(k, ω) = exp(ω/T )Sαβ(−k,−ω) (3.4)

whereT is the temperature in units ofkB . One finds

Aαβ(k, ω) = exp(ω/T )Aαβ(−k,−ω) (3.5)

and

Bαβ(k, ω) = −exp(ω/T )Bαβ(−k,−ω). (3.6)

Introducing functions8αβ and9αβ through the relations

Aαβ(k, ω) = {1+ n(ω)}8αβ(k, ω) (3.7)

and,

Bαβ(k, ω) = {1+ n(ω)}9αβ(k, ω) (3.8)

with, as usual, the so-called detailed-balance factor defined as

{1+ n(ω)} = {1− exp(−ω/T )}−1 (3.9)

the results (3.5) and (3.6) lead to

8αβ(k, ω) = −8αβ(−k,−ω) (3.10)

and

9αβ(k, ω) = 9αβ(−k,−ω). (3.11)

Results (3.10) and (3.11) are well known, and8αβ(k, ω) is frequently expressed in terms
of an auxiliary function, e.g. the dissipative part of the susceptibility or Kubo’s relaxation
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function [8, 9]. The result in [6] for the susceptibility, numbered (A7), has an incorrect
energy denominator which affects all results that ensue.

Evaluated forω = 0, the result (3.6) shows that

Bαβ(k, 0)+ Bαβ(−k, 0) = 0. (3.12)

Thus, if the response function is independent of the sign ofk, and so the response is spatially
isotropic, the conclusion from (3.12) is that the antisymmetric part of it is zero forω = 0.
Also, in this case9αβ becomes an even function ofω, and8αβ an odd function.

The result (3.12) applies to the special case of Bragg scattering. A helical ordering of
the atomic magnetic moments is an example of a non-collinear configuration of the moments
for which Bαβ(k, 0) is an odd function ofk. In consequence, for a simple helix with a
pitch 2π/Q the intensities of Bragg reflections are different for the satellites at the settings
±Q.

An additional set of useful results follow from the invariance of the Hamiltonian to a
reversal of the velocities and rotations, or spin, of the electrons in the target sample. The
time-reversal invariance of the Hamiltonian leads to the identity [9, 10]

S
αβ

−H(−k, ω) = SβαH (k, ω) (3.13)

whereH is the applied magnetic field or the axis of quantization. All previous identities
and results are valid for an arbitraryH. For brevity of notation we have chosen not to
attach a subscriptH to the response function and quantities derived from it. Note that, just
as in (3.4), the identity (3.13) entails different signs fork, and this requirement is absent in
the work reported in [6]. If the ions occupy sites that are centrosymmetric and there is no
long-range order, or the magnetic order is collinear, the van Hove response function does
not depend on the sign ofk.

Applied toBαβH , for which, by definition,BααH = 0, equation (3.13) leads to the revealing
results

B
αβ

H (k, ω) =
i

2
{SαβH (k, ω)− Sαβ−H(−k, ω)} (3.14)

and

B
αβ

H (k, ω)+ Bαβ−H(−k, ω) = 0. (3.15)

The last result shows thatBαβH is possibly different from zero even in the absence of a
preferred magnetic axis in the target sample, given that the ions occupy non-centrosymmetric
sites andk 6= 0. A necessary condition for this to occur is that the Hamiltonian of the spins
is anisotropic with respect to the components of the spins, e.g.S

xy

H (k, ω) 6= 0 for H = 0
and no spontaneous ordering of the moments.

Returning to (3.14), we can viewBαβH as a measure of the chiral signature of excitations.
Consider, for example,H aligned with thez-axis. In this instance,SxyH (k, ω) describes
excitations with circular polarization, the corresponding helicity is parallel to thez-axis,
andBxyH (k, ω) is a difference between the left- and right-handed helicity states.

A simple, exact, and well-known example is the excitation of one spin-wave in a
ferromagnet. One finds, forH along thez-axis andP = (0, 0, Pz),

B
xy

H (k, ω) = iSxyH (k, ω) (3.16)

and∑
α,β

Gαβ(P ,k)B
αβ

H (k, ω) = Pzk̂2
zS{nkδ(ω + ωk)− (1+ nk)δ(ω − ωk)}. (3.17)
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Here,ωk is the dispersion of the spin-wave andnk = n(ωk). We note that the explicit
result is consistent with the general structure of the cross-section as it is exposed in (2.15).

From (3.17) one sees that created and annihilated spin-waves can be said to have equal
and opposite helicities. We have previously noted the analogue of this effect in (elastic)
Bragg diffraction from a magnet with a helical order of the moments. Adding to (3.17) the
contribution made byAαβH (k, ω) one finds that the creation and annihilation events in the
cross-section are accompanied by the factors

(1+ k̂2
z ± 2Pzk̂

2
z ) (3.18)

where the− (+) sign goes with creation (annihilation). Ifk is aligned with the preferred
axis, i.e. k̂2

z = 1, there is what amounts to a selection rule which operates for the ideal
situations wherePz = ±1. These results were verified in experiments reported three decades
ago [3].

As a second example, let us consider linear spin-waves in a ferromagnetically ordered
material with a hexagonal close-packed (h.c.p.) structure. We can include single-ion
anisotropy to make the model suitable for terbium metal, for example. The essential
differences between the model and the simple ferromagnet considered in the preceding
paragraphs is that the magnetic ions are not at centres of inversion symmetry, and, in
addition, the anisotropy means that the total spin along the preferred axis is not a constant
of motion. Even though the ions are not at centres of inversion symmetryS

xy

H (k, ω) does not
depend on the sign ofk, and the same lattice structure factor occurs in bothA

αβ

H (k, ω) and
B
xy

H (k, ω). In consequence, the cross-section for linear spin-waves in the h.c.p. ferromagnet
is proportional to (3.18) multiplied by the lattice structure factor.

A key aspect of the value found forBxyH (k, ω) is that it is largely determined by [Sx, Sy ].
In the linear spin-wave approximation this commutator is taken to be a classical number,
namely iS, not the operator iSz. Kinematic interactions not included in the linear theory
will thus modify the value found forBxyH (k, ω).

We do not have an exact result for a simple antiferromagnet. The standard spin-wave
approximation, constructed from the Néel state, shows that the response function in (3.16)
is zero. This result reflects the fact that the spin excitations on the two sublattices are the
same except for the precession which is in opposite directions. The situation is changed
by applying a magnetic field, because the field creates an imbalance in the two precession
frequencies, and the quantity in (3.16) is different from zero. A calculation which confirms
this argument is reported in [11] which examines the excitations in a magnetic salt with
hybridized lattice and spin-wave modes.

The three examples in the preceding discussion have the common feature of a collinear
configuration of the magnetic moments. For this case and linear spin excitation,B

αβ

H (k, ω)
has for its dependence onω the function shown in (3.17), and the form of this function
reflects the fact that the commutator of the components of the spin operator perpendicular
to the preferred axis is ac-number, i.e. the excitations are non-interacting bosons. As might
be anticipated, linear excitations from a non-collinear configuration of the moments lead
to a different kind ofBαβH (k, ω). While the dependence onω is derived from the function
in (3.17), because the spin excitations do not interact, one findsB

αβ

H (k, ω) 6= BαβH (−k, ω).
As our example, we consider a simple helix with a pitch 2π/Q. Here, there are spin-wave
excitations about the two satellite settings±Q, each with theω-dependence given in (3.17).
However, the structure factors at±Q, not surprisingly, are different and such thatB

αβ

H (k, ω)
is an odd function ofk. The latter finding is for inelastic scattering the analogue of the
result noted before about Bragg intensities in diffraction by a helimagnet.
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4. Conclusions

We have shown that the contribution to the cross-section for the magnetic scattering of
neutrons which is induced by polarization in the primary beam is the product of two factors:
(i) the projection of the polarization,P , on the scattering vector,k, and (ii) the projection of
the antisymmetric combination of the Cartesian components of the van Hove spin response
function onk (the contribution in question is not included in the discussion reported in
[13]). The antisymmetric combination we denote byBαβH (k, ω) = −BβαH (k, ω), whereω is
the energy transferred to the sample in the scattering event andH is the preferred magnetic
axis. The cross-section in question is proportional to

(k · P )
∑
αβγ

εαβγ kγ B
αβ

H (k, ω)

whereεαβγ is the completely antisymmetric tensor with three Cartesian indices.
It is shown thatBαβH (k, ω) is proportional to the imaginary part of the van Hove

spin response function, and intimately connected to the commutation (Lie) algebra of spin
operators. Two classes of properties are derived forB

αβ

H (k, ω) by applying to the response
function, respectively, the condition of detailed balance, and the invariance of the target
sample’s properties to a reversal of the direction of time.

For elastic scatteringω = 0, and one finds

B
αβ

H (k, 0)+ BαβH (−k, 0) = 0

with BαβH (k, 0) = Bαβ−H(k, 0). The spin response function can be spatially anisotropic, and
different for the scattering wave vectorsk and−k, when the lattice sites occupied by the
spins are not centrosymmetric, and the configuration adopted by the spin moments is not
collinear.

One can viewBαβH (k, ω) as a measure of the chiral signature of spin excitations [12].
This property is very clear in the total scattering, for the corresponding cross-section contains
the projection onk of a chiral order parameter. In inelastic scattering events,B

αβ

H (k, ω)
is properly interpreted as the difference in the response of excitations with left- and right-
handed helicities. Several examples of inelastic scattering are discussed, which illustrate
the roles of the spin algebra and the configuration of the equilibrium distribution of the spin
moments.

The cross-section for the magnetic scattering of unpolarized neutrons,P = 0, is
expressed in terms of the symmetric combination of the Cartesian components of the van
Hove spin response function, which is the real part of the response function. We compare
and contrast the properties of the symmetric and antisymmetric combinations, using the
condition of detailed balance and time-reversal invariance.
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